

AC = ____ The hypotenuse is ____

- Q.4 Solve the following
 - 1 In \triangle ABC, point M is the midpoint of side BC. If, $AB^2 + AC^2 = 290 \text{ cm}^2$, AM = 8, find BC

- 2 Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.
- Q.5 Answer the following
 - 1 \Box ABCD is a parallelogram. Side AB = diagonal BD. Prove that BD² + 2BC² = AC².

2 In $\triangle ABC$, $\angle BAC = 90^\circ$, seg BL and seg CM are medians of $\triangle ABC$. Then prove that: 4 (BL² + CM²) = 5 BC²

- Q.6 Answer the following
 - ¹ In \square ABCD, diagonals AC and BD intersect at the point E. If $\frac{AE}{EC} = \frac{BE}{ED}$, then prove that \square ABCD is a trapezium, using basic proportionality theorem.
 - 2 In an equilateral triangle ABC, the side BC is trisected at D. Prove that $9 \text{ AD}^2 = 7 \text{AB}^2$.

8